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Assuming standard knowledge of mathematics up to multivariable calculus we
give an intuitive exposition of vector fields on manifolds, the main exhibit being
the hairy ball theorem for the sphere S2 and its generalisation to compact mani-
folds due to Poincaré and Hopf.

1 Vector fields and the hairy ball theorem

A vector field on Rn is usually seen as a function f : Rn → Rn with some as-
sumptions of continuity. For our intents and purposes we will assume all vector
fields infinitely differentiable, also known as smooth. Vector fields are widely used
in physics in order to mathematically describe the velocity in a fluid, electromag-
netic fields, gravity, etc.

(a) Field A: constant field
(b) Field B: spirals app-
roaching the unit circle

Figure 1: Two vector fields on R2 with integral curves in red: this is the curve
describing the motion of a "point particle" under the influence of the vector field
over time.

We say that a vector field f vanishes if for some point p ∈ Rn, we have f (p) = 0.
Clearly field B above vanishes at (0, 0) (the origin is a stationary point) while field
A does not vanish on R2 (it is constant).
From here it is not very difficult to imagine vector fields on more general shaped
domains. A nice class of examples is that of smooth level surfaces: for some real
value a and some smooth real-valued function h : R3 → R, consider S = h−1({a}),
the set of points itmaps to a. Under the assumption that∇h is nonzero throughout
S, this is a smooth surface.
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At every point of S wemay consider the plane of vectors ofR3 which are tangent to
the surface - this is the 2-dimensional tangent space of S at the point. Consequently
a smooth vector field on S is the assignment of a tangent vector at every point of
S in a way that varies smoothly along the surface.
Two crucial examples of surfaces that we will consider here are the sphere S2 - the
set of unit vectors in 3-space1 and the torus T2. The latter is maybe not very famil-
iar in equation form2 but we have a very good intuition for it being a doughnut-
shaped hollow surface.
Let us focus on the sphere for a bit. The followingmysterious sounding statement
is incredibly useful in studying S2:

the sphere with one point removed looks like the real plane.

In fact, let N be the north pole of our sphere, i.e. N = (0, 0, 1). Now select a point
Z ∈ S2 \ {N} and draw the line between Z and N. This line intersects the "real
plane" R2 × {0} = {(x, y, 0)} at exactly one point z.

Writing out this assignment Z 7→ z we see that it is in fact invertible and smooth
as we vary Z, as long as we avoid N. (The assignment is a smooth bijection be-
tween S2 \ {N} andR2, usually called the stereographic projection.) We also see that
avoiding N was truly necessary - aswe travel to the north pole along the sphere the
corresponding points z of R2 will be removed very far away so that the sphere’s
north pole morally corresponds to a "point at infinity" for R2.
In this sense, a lot of what happens in R2 can be extended to the sphere by just
"adding behaviour at ∞". Now let’s extend the vector fields in Figure 1 to the
sphere.
In the original field B in Figure 1b, if a particle started out in the origin (0, 0) it
stayed there "forever" (this was a zero for the vector field). Particles placed in R2

outside and inside the unit circle travelled towards the unit circle. This "fixes" the
1This is a smooth level surface for (x, y, z) 7→ ‖(x, y, z)‖ and a = 1
2A torus with radii 0 < r < R is a level surface for (x, y, z) 7→ (R−

√
x2 + y2)2 + z2 and a = r2
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point at infinity: a particle starting out infinitely far away remains so. We thus
have a new zero in the corresponding vector field on S2 - the north pole:

Figure 2: Field B extended to the sphere. We see that the unit circle of R2 corre-
sponds to the equator of the sphere. What was outside the unit circle corresponds
to the upper hemisphere and what was inside - to the lower hemisphere. The ori-
gin (0, 0) corresponds to the south pole (0, 0,−1).

The vector fieldA in Figure 1a translated every point ofR2. However, if we fold up
the plane using the stereographic projection above we see that as we get further
away from the origin (and closer towards the north pole N) this constant amount
of translation, as seen on the sphere, matters less and less. Taking this argument
to the extreme, this fixes the point at infinity. That is, even though we tried, we
could not create a vector field on the sphere without zeroes.

(a) The R2 part (b) Behaviour at infinity

Figure 3: Field A extended to the sphere

Judging by the examples above, and also intuitively, it seems difficult to "comb a
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hairy ball without creating any licks". It turns out that this is not only difficult, but
mathematically impossible. This is the content of the famous hairy ball theorem:

Theorem 1.1. Any vector field on S2 vanishes.

Proof. This can be deduced in an elementary way from a more general result due
to Poincaré and Hopf, to which we dedicate Section 3.

Now consider the torus T2. We can easily comb it without creating licks - for
instance, like this:

Figure 4: Combed torus

How come one can easily find nonvanishing vector fields on the torus but not on
the sphere? After all the two are similar as objects - they are both two-dimensional
surfaces and they are both compact3! Well, the obvious difference is that the torus
has a hole where the sphere doesn’t: we cannot stretch and bend the sphere into the
shape of a torus. It turns out that it is this sort of geometrical property that forces
any vector field on the sphere to have zeroes. Let us briefly define some concepts
in order to quantify this difference as we move on towards an appropriate gener-
alisation of Theorem 1.1.

2 Some technology needed

The proper setting of object in which to generalise 1.1 is really not much different
from the smooth level surfaces discussed earlier. A smooth k-manifold4 is a subset
M ⊆ Rn of Euclidean n-space that locally (i.e. if you look close enough) looks like
a piece of a smooth k-dimensional level surface (i.e. the preimage of an a under

3Closed and bounded.
4This is the historical definition of (smooth)manifold (variété in French) given byHenri Poincaré

at the turn of the 20th century. The modern definition usually involves more abstract machinery
but is equivalent to the one given here.
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a nice function5). The tangent space of M at a point is defined in the exact same
way as before and is again k-dimensional. The definition of manifold allows for
capturing many properties of "smooth" objects in a coordinate free way.
Of course, letting n = 3 and k = 2 in this definition includes the case of smooth
level surfaces of Section 1.
Now let us briefly return to the (n, k) = (3, 2) setting of the previous section and
the geometry of surfaces. NB: in this context, "surface" refers to a 2-dimensional
manifold, but a "level surface" can be of any dimension!
The concept of a triangulation is best understood as a combinatorial approximation
of a smooth object. (A reader familiar with computer modelling can think of it as
meshing!) Slightly more formally, it is a homeomorphism between the manifold
and a simplicial complex, or intuitively a continuous deformation of the manifold
into a polytope, as illustrated in Figure 5. If a manifold has a triangulation we say
it is triangulable.
In a triangulation, we call an n-dimensional "piece" of the polytope in question an
n-simplex (in plural simplices). That is, a 0-simplex is a point, a 1-simplex is a line,
a 2-simplex a face, etc.

Figure 5: examples of triangulations

Definition 2.1. The Euler characteristic χ(M) of a triangulable manifold is the al-
ternating sum of the number of n-simplices in its triangulation.

5Now the function h of the level surface is defined on (an open set of) Rn and takes values in
Rn−k.
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It can be shown that the characteristic does not depend on the choice of trian-
gulation. The interested reader may also find that it can be defined through the
dimensions of the so-called homology groups, the Betti numbers. For the familiar
case of closed orientable surfaces, two examples of which we have already seen,
this has a nice expression:

Proposition 2.2. χ(S) = 2 − 2g for a closed orientable surface S, where g is its
genus (in plural genera), i.e. the number of holes. In particular χ(S2) = 2 and
χ(T2) = 0.

Proof. See for instance [Rey89].

A classical result describes the surface of a polyhedron with V corners, E edges
and F faces having the Euler characteristic χ(S) = V − E + F. For a convex poly-
hedron, χ(S) = 2. This confirms our intuition - any convex polyhedron can be
deformed into a sphere, which has χ = 2 by Proposition 2.2.

Figure 6: some orientable closed surfaces and their genera

Definition 2.3. The n-sphere Sn is the set of unit vectors in Rn+1. It is naturally
a level surface of the polynomial function ‖ · ‖ and as such an n-dimensional
(closed) manifold.

The natural triangulation of the n-sphere is of course the n-simplex. By combina-
torial reasoning we can find that its Euler characteristic is given by the alternating
sum of terms (n

k). From this, the following result will eventuate.

Proposition 2.4. χ(Sn) = 1 + (−1)n.

Similarly to how a root of a polynomial has a well-defined multiplicity, we can
define an index of a zero for a vector field. If the zero is isolated we can pick a ball
around it without any other zeros within it. By restriction to the edge of this ball
(and normalisation), the vector field will define a map to the unit sphere in Rn

and for this mapwe can count the (integer) number of preimages. This intuitively
corresponds to the "swirliness" of the vector field, or "howmuch" it whirls around
the zero. For a point p and a vector field v we denote this (integer) number by
indp(v).
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3 Poincaré-Hopf

With this definition of index above we are ready to state the theorem in full:

Theorem 3.1. For a compact manifold M, the equation

∑
p∈M

indp(v) = χ(M)

holds for any smooth vector field v.

Proof sketch. Viewing M as a subset of some Euclidean space Rn, we can construct
a "thickening" N and use the so-called Gauss map from N to the unit sphere. The
mapping degree of this map can be shown to be the sum of the indices and most
importantly independent of the choice of vector field. Then it is possible to construct
an explicit vector field from a given triangulation for which the sum of indices
explicitly equals the characteristic.
For a complete proof, see a book, for instance [AH74] or [Mil97].

Vector fields are analytical objects developed mainly from physics, and the Euler
characteristic is a geometrical property constructed using combinatorics. The fact
that these two things, each from a different branch of mathematics, turn out to
be related in such a fundamental way is perhaps surprising at first, but beauti-
fully demonstrates that there are deep properties underlying these concepts. We
will not discuss this further philosophically, however it is a strong point of argu-
mentation that these branches of mathematics are actually describing something
meaningful and important about our world.
Poincaré’s original theorem and the generalisation by Hopf, Theorem 3.1, are
some of the first of many examples of results connecting these areas. These two
branches once seemed far apart, but now they can be viewed as different aspects of
a common general framework. Some immediate consequences include the Hairy
ball theorem, Theorem 1.1, as promised in Section 1 and settling the question re-
garding vector fields on closed surfaces.

Corollary 3.2. Any vector field on a sphere Sn for n ∈ 2Z vanishes.

Proof. χ(S2n) = 2 by Proposition 2.4, and in particular the sum

∑
p∈M

indp(v) > 0

in Theorem 3.1 cannot be an empty sum. Hence the vector field v must have at
least one zero.

Corollary 3.3. If a closed orientable surface S has a nonvanishing smooth vector
field, then it is a torus.
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Proof. By Proposition 2.2, the Euler characteristic of S is given by χ(S) = 2− 2g.
If S has a nonvanishing vector field, then by Poincaré-Hopf χ(S) = 2− 2g = 0 so
g = 1 (the surface has one hole).
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