
functional programming
axel sarlin

plan

1. background and basics
2. functions, functions, functions
3. side-effects
4. areas of application

1. background
in the beginning, there were
punch cards

later, magnetic tape

higher-level programming
languages evolved

fortran (1957)

paradigms

complexity brings need for
organisational concepts

a number of different ideas arise:

● imperative
● object-oriented
● functional

java (1995): imperative and object oriented

functional programming

roots: lambda calculus - what is computation?

focus on functions:

● composable - easy to combine parts
● transparent - clear flows of data
● reliable - same output every time*

easy to make parallel and concurrent!
a neat lambda

In Java every program consists of a list of instructions that are executed in a
particular order when the program is run.

A Haskell program is a collection of equations declaring what the result of running
the program should be.

2. functional programming

immutable values
declarations, not assignments

pure functions
always the same output for an input

referential transparency
we can always substitute a variable for its value

not allowed here!

order does not matter!

functions
(example code in Haskell)

addOne :: Int -> Int
addOne x = x + 1

square :: Int -> Int
square x = x^2

add
One

x x+1

squarex x2

magic black boxes

input output

note: no parentheses needed

common features:
pattern matching

define a function piece by piece

the compiler puts it together!
here _ is short for “anything else”

recursive definitions
functions defined in terms of themselves

list syntax:
[a,b] = a:[b] = a:b:[]

higher-order functions
we are free to apply functions to other functions

plenty of standard tools:

● map
● foldr
● scanr

example using map

folds
“instead of for loops”

iterated application of a function to output of previous step with new inputs given from a list

conceptual illustration

scans
similar to folds, but returns a list

example: summing and keeping the partial sums:

running totals

example
another advanced function

returning the initial segments of a list

example
another less boring example:

features

recap:

● type declarations
● pattern matching
● recursive definitions
● higher order functions

advantages over imperative

easier to make parallel and concurrent!

reusable code, less boilerplate - more like Lego

less risk for low-level errors

compact, high-level code - easy to read and write

powerful type system - “if your program compiles, it works”

3. handling the real world

this is all very good - but can it do anything useful?

side-effects:

● input/output
● state
● random numbers

are these compatible with “functional purity”?

yes!
but we need a “wrapper” abstraction...

example: Maybe

phone number
(integer)

name
(string)

taxable income
(integer)

motivation

our dream would be to have functions like this:

phone number
(integer)

name
(string)

taxable income
(integer)

Maybe String Maybe Int

motivation
but reality is more like this:

phone number
(integer)

name
(string)

taxable income
(integer)

Maybe String Maybe Int

motivation
so how do we compose
them?

?

composing - the hard way
for Maybe, we can do this with logical conditions...

composing - the cool way
… or with abstract wrapper formalism:

or equivalently

saved by the bind

here (>>=) is a function (called “bind”) that takes

1. some “thing” of type Maybe b
2. some function of type b -> Maybe c

...and gives an output of Maybe c

b c

m b m c

a b c

m b m c

catharsis
this works for other
wrappers as well!

composition
given by >>=“wrapper” m

examples
other “wrappers” include

● input/output
● lists
● error handling
● random
● state (e.g. count of iterations)
● quantum computation
● SQL

...you just need a (>>=) to make your own class into one!

main :: IO ()
main = getLine >>= putStrLn

example with IO and Maybe
our wrappers can also interact in neat ways:

moral
1. we can have the cookie and eat it:

treating IO String and Maybe String differently from a String, we can have
the advantages of “pure” functions whilst also handling side-effects!

2. we get a neat unified syntax for dealing with things like IO and Maybe

note
these wrappers are called monads

monads are tools that generalise containers and computation

there are other ways to handle side-effects, but monads can be used in

● FP languages like Haskell, Clojure, OCaml,
● others like Scala, Perl, Ruby, Python, Javascript, C#, PHP

4. haskell in industry
Alcatel
[..] used Haskell to prototype narrowband software radio systems, running in real-time.

AT&T
Haskell is being used in the Network Security division to automate processing of internet abuse complaints. Haskell has
allowed us to easily meet very tight deadlines with reliable results.

Deutsche Bank
The Directional Credit Trading group used Haskell as the primary implementation language for its software infrastructure.

Facebook
[uses] Haskell internally for tools, [..] a tool for programmatically manipulating a PHP code base via Haskell.

Microsoft
[..] uses Haskell for its production serialization system [which] is broadly used at Microsoft in high scale services.

overview of FP languages
old:

modern:

can be used functionally:

catching up:

lisp, scheme, ML, Erlang, miranda..

haskell, clojure, ocaml, idris, agda..

F#, scala, R, JS, kotlin, python, perl, php...

java, C++, C#..

some notable FP languages
Clojure
“industry grade LISP” that runs on the JVM
used by Spotify, Netflix, Walmart…

Erlang
industry language developed and used by Ericsson
also used by Amazon, Yahoo! and formerly Facebook

Scala
imperative/OOP/FP hybrid running on the JVM - “java with folds and monads”
rising in popularity, especially with Spark
used by Twitter, Sony, Siemens, Linkedin...

stack overflow developer survey
most loved languages

end

